Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 1168, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968381

RESUMO

Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.


Assuntos
Síndrome do Intestino Irritável , Humanos , Animais , Camundongos , Analgésicos Opioides , Encefalinas/genética , Inflamação , Dor
2.
Elife ; 112022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519536

RESUMO

The ability to proliferate is a common feature of most T-cell populations. However, proliferation follows different cell-cycle dynamics and is coupled to different functional outcomes according to T-cell subsets. Whether the mitotic machineries supporting these qualitatively distinct proliferative responses are identical remains unknown. Here, we show that disruption of the microtubule-associated protein LIS1 in mouse models leads to proliferative defects associated with a blockade of T-cell development after ß-selection and of peripheral CD4+ T-cell expansion after antigen priming. In contrast, cell divisions in CD8+ T cells occurred independently of LIS1 following T-cell antigen receptor stimulation, although LIS1 was required for proliferation elicited by pharmacological activation. In thymocytes and CD4+ T cells, LIS1 deficiency did not affect signaling events leading to activation but led to an interruption of proliferation after the initial round of division and to p53-induced cell death. Proliferative defects resulted from a mitotic failure, characterized by the presence of extra-centrosomes and the formation of multipolar spindles, causing abnormal chromosomes congression during metaphase and separation during telophase. LIS1 was required to stabilize dynein/dynactin complexes, which promote chromosome attachment to mitotic spindles and ensure centrosome integrity. Together, these results suggest that proliferative responses are supported by distinct mitotic machineries across T-cell subsets.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Proteínas Associadas aos Microtúbulos , Linfócitos T , Animais , Camundongos , Linhagem da Célula , Centrossomo/metabolismo , Segregação de Cromossomos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo
3.
Sci Signal ; 15(742): eabl5343, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35857631

RESUMO

Signals that determine the differentiation of naïve CD4+ T helper (TH) cells into specific effector cell subsets are primarily stimulated by cytokines, but additional signals are required to adjust the magnitude of TH cell responses and set the balance between effective immunity and immunological tolerance. By inducing the post-thymic deletion of the T cell lineage signaling protein THEMIS, we showed that THEMIS promoted the development of optimal type 1 immune responses to foreign antigens but stimulated signals that favored encephalitogenic responses to self-neuroantigens. THEMIS was required to stimulate the expression of the gene encoding the transcriptional regulator T-BET and the production of the cytokine interferon-γ (IFN-γ), and it enhanced the ability of encephalitogenic CD4+ T cells to migrate into the central nervous system. Consistently, analysis of THEMIS expression in polarized CD4+ T cells showed that THEMIS was selectively increased in abundance in TH1 cells. The stimulation of predifferentiated effector CD4+ T cells with antigen-presenting cells revealed a stimulatory function for THEMIS on type 1 cytokine responses, similar to those observed ex vivo after immunization. In contrast, THEMIS exerted opposing effects on naïve CD4+ T cells in vitro by inhibiting the T cell receptor (TCR)-mediated signals that lead to TH1 cell responses. These data suggest that THEMIS exerts TCR-independent functions in effector T cells, which increase the magnitude of normal and pathogenic TH1 cell-mediated responses.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Células Apresentadoras de Antígenos , Citocinas , Imunidade , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Células Th1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...